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Abstract: Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an
impact on the prevalence of rising obesity around the world over the last forty years. These chemicals
are probably able to contribute not only to the development of obesity and metabolic disturbances in
individuals, but also in their progeny, having the capability to epigenetically reprogram genetically
inherited set-up points for body weight and body composition control during critical periods of
development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-
endocrine–immune metabolic regulatory pathways, leading to pathophysiological consequences
in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy
expenditure regulations, changes in gut microbiota–intestine functioning, and many other processes.
Evidence-based medical data have recently brought much more convincing data about associations
of particular chemicals and the probability of the raised risk of developing obesity. Foods are the
main source of obesogens. Some obesogens occur naturally in food, but most are environmental
chemicals, entering food as a foreign substance, whether in the form of contaminants or additives,
and they are used in a large amount in highly processed food. This review article contributes to a
better overview of obesogens, their occurrence in foods, and their impact on the human organism.

Keywords: obesity; obesogens; food; adipose tissue; metabolic disruptors; systematic low-grade
inflammation; metabolic syndrome

1. Introduction

The rapid and significant increase in the prevalence of obesity worldwide over the last
forty years is considered not to be attributed solely to genetic or life style risk factors, such
as energy-dense and nutritionally poor diets, sedentary lifestyle, or aging. New evidence
has shown that epigenetic, central regulatory pathways, and endocrine-disrupting changes
that are associated with human exposure to man-made chemicals might also contribute to
the obesity epidemic. So-called obesogens are xenobiotics directly or indirectly promoting
adipogenesis and obesity in animals and humans, influencing individuals or their progeny.
Many of these chemicals may also crossroad or modulate the effect of endogenous ligands
of nuclear or non-nuclear transcription factors, participating in differentiation, metabolism,
and the secretory function of adipocytes [1].

There are a number of examples in medicine that synthetically produced chemicals
(drugs) may influence the development of adiposity. This usually adverse effect of phar-
maceuticals is evidenced in glucocorticoids, estrogens, some antidiabetics (such as insulin,
sulphonylureas, thiazolidinediones, glitazones), thyreostatics, dopaminergic blockers, beta
sympathetic blockers, and, in some drugs, from the groups of tricyclic antidepressants,
selective serotonin re-uptake inhibitors, atypical antipsychotic medicines, antiepileptics,
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neuropeptides, and eutonics of the gastrointestinal tract [2–8]. However, not only medicines,
but many compounds introduced in mega doses to the environment over the last decades
by human production, were recognized to be able to act as obesogens. The main route of
human exposure is dietary ingestion through contaminated food [9–11]. Also in the last 40
years, the dramatically developing food industry, using new technologies in the production
of highly processed foods, can contribute to the development of obesity by changing the
quality of food and the increased content of certain nutrients or additives [9].

2. Materials

We followed the current methodological guidelines for systematic reviews to identify,
retrieve, and summarize the relevant epidemiological literature on the relation between obe-
sogens and overweightness/obesity, Type 2 diabetes, metabolic syndrome, and atheroscle-
rotic cardiovascular disease [12,13]. Each eligible paper was summarized with respect to
the methods and results, with particular attention paid to the study design and exposure
assessment. All articles were searched using Medline and Web of Science; we focused on
the original articles and excluded doubled articles. We used the following search terms:
“obesogens, metabolic disruptors, obesogens in food, food, additives, contaminants, obesity,
adipose cells, adipose tissue, metabolic syndrome, systematic low-grade inflammation”.

3. Obesity

Pre-obesity (overweight) and obesity are medical conditions marked by an abnormal
and/or excessive accumulation of body fat that presents a risk to health (WHO 2019).
According to the last definition, adopted by the European Commission in 2021, obesity
is a chronic, relapsing disease, which in turn acts as a gateway to a range of other non-
communicable diseases, such as diabetes, cardiovascular diseases, and cancer.

The obesity prevalence has risen exponentially in the world’s population over the last
40 years. While in 1975, 6.4% of women and 3.2% of men were obese, the prevalence by 2014
roughly tripled to 14.9 and 10.8%, respectively. According to a prediction, every fifth adult
will suffer from obesity in 2025. The global age-standardized mean body mass index (BMI)
of children and adolescents aged 5–19 years has also been increased during the evaluated
period from 1976 to 2016 in both genders, leading to virtually identical age-standardised
mean BMIs for both genders [14].

The obesity pandemic has been probably brought about by dramatic changes in
lifestyle during a relatively short period of human evolution. This maladaptation is the
result of complex interactions between biological, behavioral, social, and environmental
factors that are involved in the regulation of energy balance and fat stores.

In addition to increased mechanical load on the musculoskeletal system and cardiores-
piratory load, obesity is a metabolic disease that is associated with dysfunctional white
adipose tissue, affected by systematic low-grade inflammation. This leads to chronic sys-
temic inflammation, ectopic fat accumulation in tissues and organs, a pro-coagulative state,
endothelial dysfunction, and impaired carbohydrate, lipid, protein, and purine metabolism.
It is linked to clinical conditions, such as hypertension, dyslipidemia, Type 2 diabetes
mellitus, cardiovascular, and tumor diseases.

The reported estimates for the population-attributable risks of obesity have been
shown to range from 5 to 15% for all-cause mortality, from 0.2 to 8% for all-cancer inci-
dence, from 7 to 44% for cardiovascular disease incidence, and from 3 to 83% for Type 2
diabetes mellitus incidence [15]. Obesity is one of the leading causes of death and disability
worldwide and is the fourth highest independent cause or premature mortality.

The histopathological unit of dysfunctional adipose tissue is characterized by adipocyte
hypertrophy with infiltration of M1 macrophages, as well as impaired adipogenesis, angio-
genesis, lipolysis, and de novo lipogenesis in adipose tissue.
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4. Adipose Tissue

Adipose tissue is a complex, heterogeneous, and highly dynamic organ, executing
the storage of energy and contributing to the control of energy metabolism of the whole
organism. It consists of specific cells—maturate adipocytes that are differentiated under
endocrine stimuli from their mesenchymal stem cell precursors during adipogenesis.

According to the morphology and function of the predominant maturated adipocytes
three types of adipose depots are recognized in humans: the white (WAT), the brown (BAT),
and the beige/brite/brown-like (BAT) adipose tissues. WAT contains adipocytes with a
single large unilocular lipid droplet filling most of the cytoplasm and pushing the nucleus
and organelles to the margins of the cells. BAT is characterized by smaller-sized adipocytes,
with an abundance of smaller lipid droplets and many mitochondria. The third type—
BAT—represents a combination of the attributes of previous two. Beige adipocytes are of
middle size, have more lipid droplets and fewer mitochondria than BAT. It is supposed
that WAT can be transformed into beige adipocytes under thermogenic stimuli [16].

Mature adipocytes are able under neuroendocrine control to store energy in lipid
droplets in the form of triglycerides, and release it in the chemical (WAT) or thermal form
(BAT) according to the body’s requirements. The remaining cells are made up of stromal
vascular fraction and belong to the immune, epithelial, vascular, and stromal cells. Besides
storage and distribution of energy, adipose tissue contributes to the regulation of systemic
energy metabolism by the secretion of adipokines that enables endocrine, paracrine, au-
tocrine, and cross-talk communication with other organs. The physiological production of
adipokines requires intact cellular machinery of mature adipocytes, in particular mitochon-
drial respiration and balance between lipogenesis and lipolysis. As hormones regulate the
physiology of these systems, their action can be disrupted by chemicals in the environment
that mimic or block normal endocrine functions [17].

Dysregulation of adipocytokines caused by obesity contributes to the pathogenesis of
various metabolic and cardiovascular disorders [18].

5. Etiology of Obesity

Obesity and related disorders have become a public health issue [19,20]. As a multi-
factorial disorder, obesity cannot be linked specifically to one etiology, including genetics
or environmental chemicals. While dietary restriction and increased exercise continue
to be the most prescribed treatment, the obesity pandemic continues unabated and is in-
creasing worldwide [21]. Despite the voluminous literature on obesogens and metabolism-
disrupting chemicals, a series of workshops aimed at identifying the best evidence for the
effects of these factors on obesity and diabetes have identified shortcomings in the available
data that have prevented a complete and accurate analysis of their impact.

Obesity is most likely caused by (1) imbalance between energy intake and expendi-
ture, resulting in energy surplus (e.g., by consumption of high-calorie diets); (2) genetic
predisposition (40–70%), as well as hormonal, environmental, biological, psychological,
and sociological factors; (3) lack of physical activity; (4) exposure to obesogens (endocrine
disruptors or diabetogens) [22].

6. Obesogens
6.1. The Obesogen Hypothesises

The possible impact of obesogens, originally a highly controversial issue, has been
supported by a growing body of evidence. Obesogens include xenobiotics that promote
adipogenesis and obesity in animals and humans, such as several medicines or substances
acting as endocrine disruptors [23]. Human activities have polluted water, soil, and foods.
Obesogens are currently contained in many products for daily use, e.g., personal care
products, cosmetics, cleaners, toys, kitchen utensils, plastic curtains and table cloths, soft
furnishings, furniture, mattresses, and clothes.

Obesogens are chemicals that directly or indirectly increase fat accumulation and cause
obesity [24]. The obesogenic hypothesis further suggests that obesogens can act directly at
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the cellular level to increase the commitment or differentiation of adipocytes from stem
cells by altering the number of adipocytes, increasing the retention of triglycerides within
adipocytes, or modifying the rate of adipocyte proliferation when compared to cell death.
Furthermore, obesogens can act indirectly as well by changing basal metabolic rate, shifting
energy balance to favor calorie storage, and modulating food intake and metabolism
via effects on the adipose tissue, brain, liver, pancreas, muscle, and the gastrointestinal
tract [21,22].

To sum up, obesogens promote adipogenesis and fat accumulation, affect appetite
control and satiety, and act as endocrine disruptors, possibly changing hormonal regula-
tions [25].

The effects of obesogens can only become apparent later in life [26]. Previous studies
have identified obesogens that have the potential to disrupt multiple metabolic signaling
pathways in the developing organism, resulting in permanent changes to the adult’s
physiology. Prenatal or perinatal exposure to obesogenic endocrine-disrupting chemicals
has been shown to predispose an organism to store more fat from early life [27].

This suggests that humans, who have been exposed to obesogenic chemicals during
sensitive periods of development, might be pre-programmed to store increased amounts of
fat, resulting in a lifelong struggle to maintain a healthy weight [24].

In this case, obesogens alone do not cause obesity in humans, but can work behind-
the-scenes to promote weight gain, due to the developmental programming of adipose
tissue regulation, poor diet, and metabolism [28].

In 2019, a study by Heindel and Blumberg provided strong evidence of the presence
of estrogens acting as obesogens in humans. Since 2009 (the study of Newbold et al.), it
has been known that the same holds for animals. In previous years, studies have identified
transcriptomic and metabolomic changes of polychlorinated biphenyl-126 (PCB-126) in
human hepatocytes, HepaRG, that imply the possibly detrimental role of environmental
pollutants for the development of non-alcoholic fatty liver diease (NAFLD). These impacts
might be precipitated by poor diet and/or a sedentary lifestyle [29]. Biological mechanisms
acting in the development of hepatic steatosis are divided into four categories: increased
fatty acid uptake, decreased lipid efflux, increased fatty-acid synthesis, and impairment of
the oxidative metabolism of these substances [30]. The further elucidation of impaired hep-
atic lipid metabolism is needed [31]. Animal studies have clarified the impact of obesogens
on the etiology of obesity. Currently, they focus on human lipid metabolism. Tissue culture
studies are being carried out predominantly on 3T3-L1, derived from mouse cells. The main
aims of 3T3-L1 studies are the clarification of the obesogenic potential of xenobiotics and
their metabolites, as well as the assessment of their impact on adipose differentiation. Xeno-
biotics may increase the number of differentiated 3T3-L1 pre-adipocytes and enhance their
capacity for droplet storage. The mechanism behind is most probably the up-regulation
of transcription factors CCAAT/enhancer-binding protein α (C/EBP α) and peroxisome
proliferator-activated receptor
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PPAR is a ligand-activated transcription factor, which is responsible for the growth
and development of adipose tissue and that acts as the receptor for antidiabetic drugs such
as rosiglitazone [33,34]. Neither the mechanism nor the modification of the key cellular
processes lying between induction of the receptor and onset of the disease have been
described [35,36].

The most common contaminants that are considered to be potential obesogens include
estrogens, such as diethylstilboestrol and genistein; organotins, e.g., tributyltin; fluoro
actanoates; bisphenol A; diethylhexyl phthalate. These chemicals directly alter endocrine
function and metabolic organs that control lipid homeostasis (e.g., the liver), suggesting
that exposure might be a risk factor for the development of NAFLD [22,23,37–39].

In 2015, the Parma consensus broadened the definition of obesogens to include en-
docrine disrupting chemicals that affect other obesity-related metabolic conditions that
drive metabolic syndrome, such as insulin resistance, hypertension, dyslipidemia, and
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hyperglycemia [17]. This class of endocrine-disrupting chemicals was denoted as being
metabolism-disrupting chemicals [40].

6.2. Overview of Obesogens

Presence in foods
1. Naturally occurring obesogens

Fructose
Genistein

2. Xenobiotics
2.1 Contaminants

Pharmaceuticals
Diethylstilbesterol
Estradiol
Rosiglitazone

Organic Pollutants (OP’s)
Industrial Chemicals

Bisphenol A (BPA)
Organotins
Perfluorooctanoic Acid (PFOA)
Phthalates
Polybrominated Diphenyl Ethers (PBDEs)
Polychlorinated Biphenyl Ethers (PCBs)

Organophosphate Pesticides
Chlorpyrifos
Diazinon

Organophosphate Pesticides
Dichlordifenyltrichloretan (DDT),
Dichlordifenyltrichloretan (DDT),

Other Environmental Pollutants
Benzo[a]pyrene
Fine Particulate Matter (PM2.5)
Triclosan

2.2. Additives
1. Naturally occurring obesogens

Fructose
Fructose, a monosaccharide present in fruits and honey, promotes the development of

obesity easier than glucose. Its overconsumption contributes to the increasing prevalence of
obesity, insulin resistance, and metabolic as well as cardiovascular diseases [41]. Fructose
is capable to affect the intestinal microflora with increased intestinal permeability [42].
Fructose-2,6-bisphosphate derived from fructose-6-phosphate has been identified as one
of the signaling metabolites responsible for glucose-induced recruitment of carbohydrate
response element binding protein (ChREBP) to its target genes. ChREBP promotes de novo
lipogenesis in liver and adipose tissue [43,44].

Due to the different metabolism and high lipogenic potential by fructose when com-
pared to glucose, fructose ingestion precipitates the accumulation of excessive fat in the
liver and results in weight gain and abdominal obesity [45].

Recently, fructose has become overabundant in the food industry, especially in the
case of non-alcoholic sweetened beverages and sweets.

Genistein (in soy)
Phytoestrogens, contained in various foods and food supplements, in particular soy

products, are another prominent class of chemicals. Genistein and daidzein are two of
the most abundant phytoestrogens in the human diet. For its estrogenic activity, genis-
tein has been proposed to have a role in preserving good health by regulating lipid and
carbohydrate homeostasis [46]. Genistein is also used as a supplement for menopausal
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woman. However, a recent study showed that only at high doses did genistein indeed
inhibit adipose deposition, but, at low doses similar to that found in Western and Eastern
diets, in soy milk or in food supplements containing soy, it surprisingly induced adipose
tissue deposition, especially in males. Further, this increase in adipose tissue deposition by
genistein was correlated with mild peripheral insulin resistance. Interestingly, genistein
did not significantly affect food consumption [47] suggesting an abnormal programming of
factors involved in weight homeostasis [48].

2. Xenobiotics

Xenobiotics are not natural compounds found in foods and are not used as separate
foods. The presence of xenobiotics in foods, according to the dose, can be harmful to
humans.

Substances that are not naturally occurring compounds of foods are called foreign
substances. Foreign substances or xenobiotics are classified either as contaminants or as
additives.

2.1. Contaminants

Substances contaminating foods unintentionally, not posing a risk in usual concen-
trations but being potentially harmful at higher doses, are called contaminants. They can
contaminate food. Contamination may occur at each step of the production chain.

The most common causes of contamination are: the use of veterinary drugs, contam-
inated soil from environmental pollution, persistent organic pollutants for agricultural
purposes, sanitary materials, radioactive contaminants, traffic pollutants, and contamina-
tion from packaging materials.

Substances contained in packaging materials, such as phthalic acid, are used as a
softener.

The primary contaminants of high concentration include toxic metals, above all being
lead, mercury, cadmium, and inorganic chemicals, e.g., nitrous and nitric oxide.

2.1.1. Pharmaceuticals

Some pharmaceuticals used in veterinary medicine and in animal production may act
as possible obesogens in humans:

Diethylstilbesterol (DES)
This is an estrogen that was prescribed to millions of women from 1940–1971 to

prevent abortion in the first trimester of pregnancy. The prescription has been suspended
due to adverse side effects, but the drug is still being used to enhance fertility in livestock
and, therefore, enters the food chain. DES may have acted an obesogen in the human
population [49].

2.1.2. Organic pollutants (OPs)

These toxic and cancerogenic chemicals are very resistant to degradation and many of
the products of their decomposition are toxic as well. The greatest risk stems from their
ability to accumulate in the food chain. The main source of OPs are animal foods (meat,
fatty fish, dairy products, and eggs).

2.1.2.1. Industrial chemicals

Bisphenol A (BPA)
BPA is one of the highest-volume chemicals used in commerce. Its omnipresence in

polycarbonate plastics, epoxy resins (automobile parts, safety protective equipment, food
and water containers, baby bottles, or the protective lining inside metal food cans, dental
fillings, etc.), and thermopaper contributes to continuous human exposure [50,51]. Dietary
ingestion is suspected to be the main route for human exposure, although dermal exposure
can also occur from skin contact with thermal paper. BPA has been detected at measurable
concentrations in the urine samples of almost all persons tested worldwide. In addition,
BPA has been detected in placental and amniotic fluids and human breast milk (Blumberg
2021).
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BPA is an endocrine disruptor exhibiting estrogen-like activity that is able to affect the
regulation of leptin and insulin production, and thus acts as an agonist and antagonist of
PPARy [52].

Many studies clearly support the enhancement of adipogenesis, dysregulation of
adipocytes and glucose, and the inflammatory changes of adipose tissue resulting from
BPA, resulting in obesity [53,54].

A systematic review with a meta-analysis of the epidemiological evidence, given by
Wu et al., has revealed a positive correlation between the level of BPA and obesity risk.
A dose–response analysis revealed that a 1 ng/mL increase in BPA increased the risk
of obesity by 11%. There were similar results for different types of obesity, gender, and
age [55].

Due to its adverse effects on human health, the European food safety authority (EFSA)
has determined the tolerable daily intake of BPA (4 µg per kilogram of body weight per
day) [56]. Today, there is a growing tendency to replace BPA with its analogues. This is
based on legal limits for BPA in basic goods. In 2019, a longitudinal cohort study revealed a
significant association of bisphenol S (BPS) and bisphenol F (BPF) with obesity in children
aged 6 to 19 when compared to total bisphenol and BPA. The replacement of BPA with
other bisphenols therefore might not be efficient [57].

Organotins (OTs)
These are chemicals widely used as pesticides, disinfectants, and biocides in paints.

OTs are harmful to endocrine glands and can interfere with neuroendocrine control, hor-
mone synthesis and/or the biological availability or activity of target receptors. They
impair metabolism either centrally (lateral hypothalamus) or peripherally (adipose tissue)
and result in obesity. Besides their obesogenic effects, OTs affect reproductive organs [58,59].
Due to their physical and chemical properties, OTs easily enter food chains and produce
tributyltin (TBT) and triphenyltin, which are both severely toxic [60,61].

The most common OTs include TBT. Pilot studies have shown a positive correlation
between placental TBT concentration and weight gain in infants [62,63]. Humans are
exposed to TBT in seafood, foods treated with agricultural fungicides and miticides, in-
dustrial waters, textile material, polyvinyl chloride stabilized with TBT, or food packaging.
Indirectly, house dust, which contains significant amounts of TBT, can be the source of
contamination [64,65].

Perfluorooctanoic Acid (PFOA)
This is a group of synthetic chemicals that is used for their high resistance and stability.

They are intermediates of Teflon production, and are commonly found in the environment.
The route of exposure is mostly the digestive tract.[4] Evidence supports the obesogenic
effect of PFOA, though its biological mechanism needs further clarification. A study by
Lia et al. (2020) demonstrated that the obesogenic effect of PFOA was the result of a
combination of many enzymatic pathways with insulin signaling [66]. In 2022, a study
supporting previous findings suggested that PFOA might act as a developmental obesogen,
transmitted vertically via the placenta [67].

Phthalates
Phthalates or phthalic esters form a group of chemicals that are used as softeners for

plastics, additives for cosmetics, insecticides, or as adhesives. They can be detected in
breast milk and enter foods from packaging materials, including package water and spirits,
but they are particularly present in fatty foods, because they are lipophilic. In addition, toys
containing phthalates can enter the organism when placed into the mouth [68]. Phthalates
are one of the most studied metabolic disruptors. Several observational studies suggested
that phthalates could be determinant in the pathogenesis of obesity [69]. Phthalates act
as thyroid hormone agonists as well as androgen agonists. Thus, they can affect adipo-
genesis, fat accumulation, and insulin resistance by interfering with PPAR activation [70].
A recent study from 2020 suggests an association of child growth with prenatal exposure
to phthalates, especially those of low molecular weight.[71] Furthermore, in the case of
chronic exposure to low doses of phthalates, adverse effects (spermiotoxic, embryotoxic,
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and teratogenic) on the reproductive system were observed, as well as hepatotoxicity and
nephrotoxicity [68,72].

Polybrominated Diphenyl Ethers (PBDEs)
PBDEs were used as flame retardants in plastics, electronics, vehicles, households,

furniture, textile material, and building materials. Several studies showed an association
between PBDEs and foods, as they were detected in butter, fish, and other products high
in animal fat [73]. Despite a production ban due to adverse effects on human health,
the use of reserves is still allowed. One of the most common PBDEs is PBDE 99, which
can be detected the most in adipose tissue, especially white adipose tissue [74,75]. An
epidemiological study demonstrated a positive correlation between early exposition to
PBDEs and increased adiposity at the age of 8 years [76]. This has been confirmed at the
cellular level with PBDE 99 and the adipocyte lineage of C3H10T1/2 [77]. These studies
support the obesogenic effect of PBDEs. In addition to a pro-adipogenic effect in cell
cultures 3T3-L1, they increase fat accumulation, as well as C/EBAα and PPARγ expression,
in the course of differentiation [78].

Polychlorinated Biphenyl Ethers (PCBs)
This is a group of fat-soluble chemicals that differ from each other in the number and

position of chlorine bound to the biphenyl. There are 2010 PCB congeners. Due to their
industrial use in paints, varnishes, plastics, pesticides, and coolants, they have entered the
environment and foods. Long-term consumption of food containing high amounts of PCBs
might be hazardous [26,79]. These are especially milk, fish, and animal foods. Animal
products are contaminated via agricultural premises that have not removed paint used
before 1986, before the use of PCBs was banned [80]. Animal studies suggest that PCBs
promote the differentiation of adipocytes and PPAR expression, resulting in weight gains
in offspring [25]. The obesogenic effect of PCBs is discussed in many studies [81]. Valvi
et al. demonstrated that PCB concentration in cord blood was associated with BMI and
overweightness in children at the age of 5, 6.5, and 7 years, showing a more profound effect
in girls [82,83].

2.1.2.2. Organophosphate Pesticides (OPPs)

More than 100 various organophosphates have been described. OPPs pertain to the
most commonly used pesticides worldwide and their use in agricultural premises has
rapidly increased. The World Health Organization (WHO) has designated OPPs as being
extremely hazardous [84,85].

Chlorpyrifos (CPF)
This is an organophosphate pesticide widely used in agriculture and, therefore, has

entered the environment. Today, studies on mice 3T3-L1 models are being carried out
and a study by Blanco et al. suggests that CPF and its metabolite 3,5,6-trichlorpyridinol
(TCP) affect metabolism during adipogenesis, by increasing the number of differentiated
3T3-L1 adipocytes and the capacity for storage of lipid droplets. This process is linked to an
up-regulation of the transcription factors CCAAT/enhancer binding protein α (C/EBP α)
and PPARγ, which is accompanied by a significantly higher expression of fatty acid-binding
protein 4 (FABP4) adipokine [86,87].

Diazinon
This pesticide and nematocide was widely used in agriculture and commonly detected

in the human population. Residues of diazinon were also detected in ground water
and drinking spring water [88]. Via inhibition of acetylcholinesterase, diazinon elicits
neurotoxicity. Its pro-adipogenic effect has been shown in a study on mice 3T3-L1, where
the accumulation of lipid droplets and the activation of proadipogenic signaling pathways
were related to the concentration of diazinon. Diazinon significantly induced the protein
expression of the transcription factors CCAAT-enhancer-binding proteins α (C/EBP α)
and PPARγ, as well as their downstream proteins, fatty-acid synthase (FASN), acetyl CoA
carboxylase, lipoprotein lipase, adiponectin, perilipin, and fatty-acid binding protein 4
(FABP4) [89].

2.1.2.3. Organochlorinated Pesticides (OCPs)
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Dichlordifenyltrichloretan (DDT),
Dichlorenthylendichlordiphenyldichlorethylen (DDE)
The insecticide DDT was used on a large scale from 1939 against mosquitos Anopheles

funestus, a vector of malaria. After its toxicity had been demonstrated, DDT was banned for
use. There are exceptions to this rule, especially in developing countries that are fighting
malaria. Problems with DDT and its products of degradation have continued until today
because of its continuous presence in the environment. Due to its persistence, DDT has
entered the food chain and has often been detected in animal adipose tissue and water. The
largest part of DDT and its metabolites enter the human organism via the consumption of
meat, dairy products, and fish. Leafy vegetables are usually richer in DDT when compared
to other kinds of vegetables. Breast-feeding is another important form of human exposure.
A growing amount of epidemiological evidence, in both in vivo and in vitro studies, have
associated persistent organic pollutants, such as DDT and the DDT metabolite p,p’-DDE,
with obesity [90–93]. Acute exposure causes harm to the central nervous system, while
chronic exposure can result in liver cancer, disruption of endocrine control, harm of the
fetus and fertility, and increased risk of Type 2 diabetes. DDT and especially its metabolite
DDE may pose a risk of developing obesity in later life [94]. Rodents exposed to DDT
during prenatal life have been found to have decreased energy expenditure along with
glucose intolerance, dyslipidemia, and hyperinsulinemia [95].

2.1.2.4. Other Environmental Pollutants

Benzo(a)pyrene
This is a polycyclic aromatic carbohydrate present in smoke and a proven carcinogenic

chemical that is produced in the course of burning, grilling, or smoking foods [96]. Its
anti-adipogenic effect via the aryl hydrocarbon receptor has been demonstrated on cell
cultures of human preadipocytes [97,98].

Triclosan
This is a commonly used antibacterial agent, present in oral care waters, toothpastes,

toothbrushes, antibacterial soap, washing powder, and kitchen breadboards. Exposure to
triclosan and triclocarban has been linked to an elevated risk of child obesity [99]. Animal
studies show a correlation between high levels of triclosan and estrogens, androgens, and
thyroid hormones. Human stem cell culture models have demonstrated an anti-adipogenic
effect, including a lower production of adiponectin and lipoprotein lipase (i.e., markers of
cellular fat), which is correlated to the concentration of the chemical [100].

Fine Particulate Matter (PM2.5)
In previous decades, particulate pollution has become a growing health issue world-

wide, especially in the northern and north-western regions of China [101]. Motor trans-
portation has considerably contributed to the concentration of PM in urban areas, as well as
biomass, other waste, or industrial burning or road dust [102]. Several studies have shown
an association between air pollution and the risk of obesity, predominantly in the male
population [103].

2.2. Additives

Commonly used additives have been linked to obesity. These substances include
the emulsifiers carboxymethylcellulose and P-80, the surfactants DOSS and Span-80, the
preserving agent 3-tert-butyl 4-hydroxyanisol (3-BHA), artificial sweeteners, and the flavor
enhancer monosodium glutamate (MSG) [104–106]. More than 350 additives have been
approved in the European Union and we have focused only on examples of the most
discussed.

Monosodium glutamate
This is a chemical eliciting the secretion of glucagon-like peptide-1, a hormone control-

ling appetite and satiety, and/or antagonization of the androgen receptor [107,108]. That
MSG contributes to the early onset of obesity has been demonstrated in animal studies.
Mice administered with MSG postnatally showed a significantly increased proportion of
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fat in both sexes. MSG administered postnatally to mice acted as a neurotoxic agent on the
hypothalamic arcuate nucleus, leading to obesity [109,110].

These findings represent a promising outlook for future research, as they draw atten-
tion to the consequences of a highly processed diet.

Carrageenan
This is a hydrocolloid substance, commonly present in chocolate milk and ice cream,

that is able to impair glucose tolerance, increase insulin resistance, and inhibit insulin
signaling in in vivo mouse liver cells and human HepG2 cells. A study on mice from 2021
showed a significant change in gene expression related to lipid metabolism, especially in
the decreased gene levels of adipocytokines, lipogenesis, lipid absorption, and transport,
and the increased genes for adipolysis and oxidation after carrageenan exposure [111,112].

Antioxidants
Foods often contain antioxidants, such as the preserving agent natrium sulphite,

natrium benzoate, natural coloring agents, and curcumin. Oxidative stress, caused by
the consumption of additive artificial antioxidants in foods at a younger age, has been
associated with the development of adiposity in later life.

Lower leptin secretion in mouse adipocytes 3T3-L1 after incubation with LPS mim-
icked inflammation in obesity, i.e., consuming antioxidant additives might lead to lower
leptin secretion and contribute to the obesogenic environment [113,114].

All mentioned obesogens have been shown in Table 1.

Table 1. Obesogens and their effect on human health.

Obesogens Obesogenic Effect Health Impact

N
at

ur
al

ly
oc

cu
rr

in
g

ob
es

og
en

s

Fructose

Different fructose metabolism and high
lipogenic potential = excessive fat storage

in the liver, weight gain of visceral
adipose tissue. In fetal, neonatal and
infant development, high exposure to

fructose as an obesogen can affect
lifelong neuroendocrine function,
appetite control, eating behavior,

adipogenesis, fat distribution [45].

obesity, insulin resistance,
metabolic and cardiovascular

diseases

Genistein

At high (pharmacological) doses it
inhibits adipose tissue deposition, but at
low doses (normal concentration in soy)

it induces adipose tissue deposition,
especially in men. The genistein regulate
estrogen and progesterone receptors [47].

Obesity, mild peripheral
insulin resistance

Obesogens Obesogenic Effect Health Impact

X
en

ob
io

ti
cs

C
on

ta
m

in
an

ts

Ph
ar

m
ac

eu
ti

ca
ls

Diethylstilbesterol
Endocrine disruptor with abnormal

programming of various differentiating
estrogen-target tissues [49].

Potential obesogen

Estradiol

Estradiol in combination with a diet rich
in fats and sugars causes variability in

estrogen-induced gene expression in the
dorsal raphe [7].

Potential obesogen

Rosiglitazone

Rosiglitazone reduces hyperlipidemia
and hyperglycemia, improves insulin
sensitivity and decreases serum lipids,

but does increase adipogenesis and lipid
accumulation in tissues including liver
triglyceride accumulation and hepatic

steatosis [6].

Potential obesogen
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Table 1. Cont.
In

du
st

ri
al

ch
em

ic
al

s

Bisphenol A (BPA)
Endocrine disruptor, it is able to affect

regulation of leptin and insulin secretion
(PPARy agonist and antagonist) [50].

Supports adipogenesis,
dysregulation of adipocytes

and glucose, inflammation of
adipose tissue→ obesity

Organotins (OTs)

OTs can damage the endocrine glands,
interfering with neurohumoral control of
endocrine function involves changes in
the mechanism of adipose tissue [58].

Predisposition to obesity,
metabolic disorders, and

effects on reproductive organs

Perfluorooctanoic Acid
(PFOA)

PFOA can cause aberrant lipid
metabolism in male offspring, insulin

resistance, non-alcoholic fatty liver
disease, with influencing PPARy

signaling pathway [66,115].

Obesity, hepatic inflammation,
disorders of lipid metabolism,

disruption of gut barrier
integrity in male offspring

Phthalates (di-(2-ethylhexyl)
phthalate (DEHP), di-butyl

phthalate (DBP), benzylbutyl
phthalate (BBP) and possibly

also di-isononyl phthalate
(DINP), di-isodecyl phthalate

(DIDP) and di(n-octyl)-
phthalate (DNOP)

Phthalates can cause insulin resistance,
increase endoplasmic reticulum

expression, disruption of glucocorticoid
signaling in mesangial cells and

preadipocytes [70].

Predisposition to obesity and
metabolic diseases can

influence metabolic regulation
by disrupting the homeostasis

of thyroid hormones

Polybrominated Diphenyl
Ethers (PBDEs)

PBDEs are insulin disruptors,
isoproterenol stimulates the metabolism

of adipocytes [116–118].

Predisposition to obesity,
insulin resistance in obese

individuals

Polychlorinated Biphenyl
Ethers (PCBs)

PCBs are lipophilic toxicants into
adipocytes. In particular, the degree of

halogenation or the number and position
of chlorine substituents on PCBs affects

their uptake and accumulation in
adipocytes [119].

Predisposition to obesity,
metabolic disorders

(disruption of adipose tissue
function)

O
rg

an
op

ho
sp

ha
te

pe
st

ic
id

es Chlorpyrifos

Chlorpyrifos can cause an increasing
number of differentiate 3T3-L1

adipocytes and the capacity for storage of
lipid droplets due to up-regulation of

transcription factors CCAAT/enhancer
binding protein α (C/EBP α) and PPARγ,

which is accompanied by significantly
higher expression of fatty acid-binding

protein 4 (FABP4) adipokin [86].

Metabolic disorders, obesity

Diazinon

Via inhibition of acetylcholinesterase,
diazinon elicits neurotoxicity,

significantly induces protein expression
of transcription factors

CCAAT-enhancer-binding proteins α
(C/EBP α) and PPARγ as well as their

downstream proteins, fatty-acid synthase
(FASN), acetyl CoA carboxylase,

lipoprotein lipase, adiponectin, perilipin,
and fatty-acid binding protein 4 [89].

Obesity, neurotoxicity
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Table 1. Cont.
O

rg
an

oc
hl

or
in

at
ed

pe
st

ic
id

es

Dichlordifenyltrichloretan
(DDT), Dichlorenthylen-

dichlordiphenyldichlorethylen
(DDE)

DDT, DDE can cause disruption of
endocrine control, glucose intolerance,
dyslipidemia, and hyperinsulinemia

[120].

Acute exposure causes harm
to the central nervous system,

while chronic exposure can
result in liver cancer, obesity,

harm for the fetus and fertility
and increased risk of Type 2

diabetes

O
th

er
en

vi
ro

nm
en

ta
lp

ol
lu

ta
nt

s Benzo[a]pyrene
It can be originator cytotoxicity and
expression of inflammation markers

[121].

Predisposition to obesity,
non-alcoholic fatty acid
disease, asthma, hepatic

steatosis

Fine Particulate Matter
(PM2.5)

PM2.5 may cause adipose tissue
inflammation [103].

Risk of obesity, predominantly
in the male population

Triclosan

Animal studies show a correlation
between high levels of triclosan and

estrogens, androgens and thyroid
hormones [100].

Risk of obesity

A
dd

it
iv

es

Monosodium glutamate

It induces the secretion of glucagon-like
peptide-1, a hormone controlling appetite
and satiety, and/or antagonization of the

androgen receptor, act as a neurotoxic
agent on hypothalamic arcuate nucleus

and lead to obesity [107,108].

Obesity

Carrageenan

Is able to affect glucose tolerance,
increase insulin resistance and inhibit

insulin signaling in in vivo mouse liver
cells and human HepG2 cells, promote
significant changes in gene expression
related to metabolism and lowering of
adipokine genes, as well as lipogenesis,

absorption, and transport of lipids.
Adipolysis and oxidation increase

[111,112].

Predisposition to obesity

Antioxidants

Consuming antioxidant additives might
lead to lower leptin secretion and

contribute to the obesogenic environment
[113,114].

Predisposition to obesity

7. Obesogen Elimination Method

The common occurrence of obesogens with which humans are in regular contact
should be limited. Because humans are already heavily exposed to environmental obeso-
gens in the form of plastics, pesticides, herbicides, industrial products, and personal care
products, compounds intentionally added to foods, such as certain artificial sweeteners,
phytoestrogens, preservatives, added sugars (e.g., corn syrup with a high fructose content)
deserve special attention. Furthermore, it has already been proven that many obesogens
are found in animals and their products, which we then use as food [106–111].

Another way to eliminate obesogens is to consume organic products that are not
treated with pesticides, fungicides, and other sources of obesogens. Fruits and vegetables
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are commonly treated with fungicides that have been identified as obesogens, such as
glyphosate used on corn, wheat, and rice [122–124].

Food processors also deal with the issue of obesogens. Studies are being sought look-
ing for methods of eliminating obesogens from food. For example, Rezaei et al. published a
study in 2021 to remove the pesticide diazinon from apple juice and found a successful so-
lution using fermentation with the cultivated bacterium Lactobacillus acidophilus, where the
product is stored in the cold for 28 days after fermentation and the diazinon is completely
removed [125].

8. Conclusions

The study of obesogenic compounds in food is still in its early phase, and people are
constantly exposed to obesogens, either directly from food or contaminated food. Regarding
the objectives of food industry technologies, i.e., the extension of expiration dates, cost
reduction, the best attainable palatability, optimization of production effectiveness, and
food safety in terms of the absence of pathogens, over 4000 new substances have entered
into foods. In most of the new substances, their impact on overall metabolic homeostasis
remain unknown. Many of these xenobiotics may, as obesogens, cause epigenetic, central
regulatory pathway, and endocrine-disrupting changes, directly or indirectly promoting
adipogenesis and obesity in humans, influencing individuals or their progeny. Many
of them may also crossroad or modulate the effect of endogenous ligands of nuclear
or non-nuclear transcription factors, participating in differentiation, metabolism, and the
secretory function of adipocytes. Metabolism-disrupting chemicals may affect other obesity-
related metabolic conditions that drive metabolic syndrome, such as insulin resistance,
hypertension, dyslipidemia, and hyperglycemia.

Confirmation of the effect of obesogens at the current exposure concentrations for
the general population still requires a larger number of scientific studies to support better
management of these chemicals in our environment, and to decrease human exposure.

The biological effects of main obesogenic candidates can be correctly analyzed to
obtain data to advocate for the requirement to revise their regulation. Efforts should be
made to better regulate the production of these obesogens and metabolic disruptors, their
use and, therefore, decrease environmental and food contamination. In addition, new
approaches and ways to minimize their obesogenic, and especially metabolic-disrupting,
potential in humans should be under investigation, which could help to develop an efficient
strategy to reverse the increasing trend of the obesity pandemic.
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